
TERD: The Layer 1 for Trading

Built to be the destination for exchanges and trading apps

TERDLabs

1 Abstract

The evolution of new technologies has shown a re-

curring pattern known as the application-infrastructure 

cycle, where applications drive the demand for im-

proved infrastructure, which in turn enables new types 

of applications to flourish. The first generation of pub-

lic blockchains provided the initial infrastructure that 

paved the way for the explosive growth of decentralized 

applications in recent years. However, as these appli-

cations move beyond their initial adoption phase, they 

often face challenges related to scaling, speed, and reli-

ability. Similar to how web2 infrastructure specialized 

around major use cases as the industry matured, web3 

infrastructure needs to adapt to the needs of key ap-

plication types to enable the largest apps in web3 to 

reach mass adoption. Irrefutably, trading is the most 

widely adopted use case for crypto, and this level of 

adoption is set to grow exponentially as the industry 

expands. We present TERD, a general purpose lay

er 1 blockchain designed for trading. At a protocol l

evel,TERDintroduces novel approaches for block prop

agation,transaction ordering, block processing, and pa

ralleliza-tion that benefit a wide range of trading appli

cations.2 Introduction

ity, the need to exchange digital assets is fundamental

to every aspect of crypto, from social applications to

A common misconception is that trading is limited

to decentralized finance (DeFi) applications. In real-

non-fungible tokens (NFTs) and gaming.

Most applications in the crypto industry rely heav-

ily on trading functionality as a source of traffic or are

disguised as trading applications. For instance, many

web3 games incorporate in-game asset trading as a core

element of the user experience. One of the most com-

pelling value propositions of crypto lies in providing a

permissionless, trustless venue for users globally to ex-

change any digital asset at any time of the day.

Most people tend to underestimate the exponen-

tial growth potential of a product that achieves deep

product-market fit, and trading has reached that level

in web3. However, as with any product with strong

product-market fit, the next step is to drive growth,

and trading apps today face limitations due to the con-

straints of existing layer 1 blockchains. Challenges such

as reliability, scalability, and speed hinder trading ap-

plications from delivering the seamless user experience

necessary for achieving mass adoption.

To address these challenges, we propose TERD,

a layer 1 blockchain designed for trading.

At the protocol level,TERDuses Twin-

Turbo consensus and multiple degrees 

of parallelization to minimize latency and maximize 

throughput.

TERDalso allows apps to customize the user 

experience via a native order matching engine. Ap-



TERD: The Sector Specific Layer 1 2

Fig.1. Block proposals with transaction identifiers

plications can thrive with infrastructure that has been 

tailor-built to meet the unique demands of the trading 

user experience. By addressing the limitations of previ-

ous layer 1 blockchains, TERD’s robust architecture o

ffers a foundation for applications to scale and reach

mass adoption.

3 Protocol Improvements

3.1 Twin-Turbo Consensus

3.1.1 Intelligent Block Propagation

Once a full node receives a transaction from a user,

it must broadcast that to other nodes in the network.

Full nodes will randomly gossip this transaction to

other nodes in the network. Once a transaction is re-

ceived by a validator, it verifies the validity of the trans-

action, and adds that transaction to that validator‘‘s

local mempool.

Since most, if not all, transactions will already have

been received by validators through the transaction dis-

semination approach discussed above, proposers will in-

clude unique transaction identifiers in the block pro-

posal, along with a reference to the full block. Pro-

posers will first disseminate the proposal to other val-

idators in the network, followed by the entire block

(containing the full contents of each transaction). The

proposal will get sent as one message, whereas the en-

tire block will get broken up in parts and gossiped to

the network. If a validator has all of the transactions

from the proposal in its local mempool, it will recon-

struct the entire block from its mempool rather than

waiting for all block parts to arrive. If it doesn’t have

all transactions, it will wait to receive all of the block

parts from the network, and will construct the block

Block proposers will look at the current state of

their mempool and propose a block to be committed.

with all of its transactions.

This process significantly decreases the overall

amount of time that a validator waits to receive a block.



TERD: The Sector Specific Layer 1 3

(a) (b)

Fig.2. Block processing with example times (a) Block processing after precommit (b) Optimistic block processing

Once validators have all of the transactions as part of

the block proposal, they will follow the Tendermint

BFT consensus to agree on the transaction ordering.

In particular, there will be a prevote step, a precom-

mit step, and a commit step before the block and the

associated state changes have been committed to the

blockchain.

3.1.2 Optimistic Block Processing

As part of Tendermint consensus, validators will re-

ceive a block proposal, verify the validity of the block,

and then proceed to the prevote steps.

Rather than waiting until after the precommit step

to begin transaction processing (figure 2a), validators

will start a process concurrently to optimistically pro-

cess the first block proposal they receive for any height

(figure 2b). The optimistic block processing will write

the candidate state to a cache.

If that block gets accepted by the network, then the

data from the cache will get committed. If the network

rejects the block, then the data from the cache will get

discarded, and future rounds for that height will not

use optimistic block processing.

The theoretical improvement in latency due to op-

timistic block processing is

min(Tprevote + Tprecommit, N ∗ T )

where Tprevote is the prevote latency, Tprecommit is the

precommit latency, N is the number of transactions and

T is the average latency of a single transaction.

3.2 Parallelization

TERDuses Cosmos SDK as the base for the applicat

ion logic. As part of this logic,

when validators receive a 

block and start processing it to update the state of the 

network, they will initially run BeginBlock logic, fol-

lowed by DeliverTx logic, followed by EndBlock logic.

Each of these are completely configurable, and TERD

has configured DeliverTx and EndBlock to parallelize tr

ans-action processing, as shown in figure 3.

TERDfirst processes all transactions in a block d

ur-ing the DeliverTx phase. This results in state chan

ges for most types of transactions (sending tokens,

gov-ernance proposals, smart contract invocations, e

tc.).



TERD: The Sector Specific Layer 1 4

Fig.3. Block processing with and without parallelization

However, order matching engine related transactions

only go through basic processing during the DeliverTx

phase, and have most of their state changes get applied

during the EndBlock logic. This is done to support

frequent batch auctions, where orders are aggregated

and a uniform clearing price is calculated at which to

execute orders (see section 4.1.1 for more information).

TERDhas added in parallelization to both Deliver

Tx and EndBlock to get optimal performance.

3.2.1 DeliverTx Transaction Parallelization

This is achieved by maintaining a mapping of trans-

action message types to the keys they need to access

(dependency mappings). Messages that are updating

different keys can be run in parallel, but messages up-

dating the same key will need to be run sequentially and

in a deterministic order (the ordering is determined by

Rather than processing transactions sequentially 

during DeliverTx,

TERDprocesses transactions in paral-lel (see figure 4)

. This allows multiple transactions to be processed si

multaneously, which leads to improved performance.

Data for TERDis persisted in a key-value store. To p

revent race conditions and nondeterminism,TERDneed

s to ensure that multiple parallel processes are not upd

ating the same key.

the ordering of transactions in the block).

Prior to executing transactions for a block, any de-

pendencies between transactions are identified by con-

structing a directed acyclic graph (DAG) of dependen-

cies between the different resources that each message

in each transaction needs to use.

An example of a basic dependency mapping is for

messages related to an example X module. All mes-

sages to this module update the same key ABC, so all

of these messages will need to be run sequentially in the

same branch of the access DAG.

In many cases the contents of the message are

needed to give further parallelism. For example, trans-



TERD: The Sector Specific Layer 1 5

Fig.4. Access DAG for parallel processing

fers of tokens from account A to B and account C to D

can be run in parallel since they update different keys.

However, only defining the mapping based on the mes-

sage type (and ignoring message contents) will result in

these two transfers running sequentially.

To give flexibility around this type of parallelism,

dependency mappings can be defined as templates,

which will get filled with more granular resources at

runtime. In this token transfer example, the sender

and receiver accounts will be passed into the template

to yield more granular parallelism.

For message types that are set by developers build-

ing on TERD, smart contracts will need to define t

heir own resource dependencies. These will be set at

con-tract initialization and can be updated by the s

mart contract admin through update transactions. If t

he de-pendencies are properly written, then smart con

tracts will benefit from parallelism and pay cheaper ga

s fees.If no dependencies are defined, then smart con

tracts will run sequentially and block other transaction

s from running. Since they are blocking the rest of t

he net-work, transactions to those smart contracts will

need to pay greater gas fees. If the dependencies for

a specific smart contract are incorrectly defined, the

n messages for that particular smart contract will fail

and greater gas fees will be charged, but the network ov

erall will be unaffected and other messages will succeed

For message types that are defined by the chain

(staking, oracle updates, bank sends, etc.), mappings

are set at blockchain genesis, and can be updated via

a governance proposal. There is one edge case for the

message type related to gas fee collections, which affects

every transaction. This is handled by writing data to

an in-memory datastore that is flushed at the end of

the DeliverTx logic.

.



TERD: The Sector Specific Layer 1 6

3.2.2 Market Based Parallelization

TERDhas a native price oracle to support asset

ex-change rate pricing.

Validators are required to partici-

pate as oracles in order to ensure the most reliable and 

accurate pricing for assets. In order to maintain fresh-

ness of oracle pricing, voting windows can be configured 

to be as small as 1 block long, resulting in rapid price 

At the end of the block, all matching engine re-

lated orders will be processed by the native matching 

engine. Rather than processing orders sequentially,

TERD 

will process independent matching engine related or-

ders in parallel at the end of the block. Two orders are 

independent if they do not affect the same market in 

the same block. By default, the chain will assume all 

orders touching different markets are independent, un-

less developers explicitly define dependencies between 

different markets. These dependencies will be defined 

when a smart contract is deployed. If these dependen-

cies are defined incorrectly, then transactions to the 

dependent smart contract will fail.

3.3 Native Price Oracles

updates and fresh asset pricing.In the vote step for a voting window, the validator

provides their proposed exchange rates for that window.

At the end of the voting period, all of the exchange

rate votes are accumulated and a weighted median is

computed (weighted by validator voting power) to de-

termine the true exchange rate for each asset.

There are penalties for non-participation and par-

ticipation with bad data. Validators have a miss count 

that tracks the number of voting windows in which a 

validator haT E R D ther not provided data or provide

d data 

that deviated too much from the weighted median. In 

a given number of voting periods, if a validators miss 

count is too high, they are slashed as a penalty for mis-

behaving over an extended period of time.

4 Native Order Matching Engine

TERDoffers the functionality of a general purp

ose blockchain (i.e. allowing users to transfer assets

and deploy smart contracts). In addition to that, TE

RDhas created an order placement and matching engi

ne (re-ferred to as the ‘‘matching engine‘‘for the remai

nder of the paper) that can be used by any exchanges

building on top of TERD.

4.1 Deploy decentralized exchanges with TERD

All matching engine related transactions will be ex-

The matching engine allows decentralized exchanges 

that are building on top of TERDto deploy their own or

der-books.

The matching engine maintains their respective 

orderbooks at a chain level, and provides functionality 

to create markets and allow users to trade.

4.1.1 Lifecycle Of An Order

ecuted atomically in the scope of a block.

Transactions related to the matching engine will be

sent to the dex module, as shown in figure 5.

One transaction may be composed of one or more

orders (see section 4.4.1 for more information). Upon

submission, the transaction handler processes the trans-

action by adding the orders included from each transac-

tion into the dex module’s internal MemState (Figure

5 action 1).

While processing each block, the dex module has

an EndBlocker hook that processes orders recorded in

the MemState in bulk (Figure 5 action 2). Specifi-

cally, when dex module EndBlocker hook is invoked,

orders across transactions will be aggregated by mar-

ket (i.e. all orders for a BTC perpetual), and combined

into one smart contract call for that particular market

(see section 4.4.2 for more information about chain level

bundling).

The chain will then call the smart contract associ-



TERD: The Sector Specific Layer 1 7

Fig.5. Lifecycle of a transaction

ated with that market (i.e. calling a perpetual exchange

smart contract), which has all of the logic defined for

how to interact with the matching engine (Figure 5 ac-

tion 3). The smart contract will implement its own

custom logic, and then call the matching engine (Fig-

ure 5 action 4).

The matching engine will first process all order can-

cellations. This will remove the associated limit orders

from the order book store.

Then all limit orders will be added to the orderbook.

This ensures that orders are getting filled with maximal

liquidity.

Then, the matching engine will process market or-

ders. A uniform clearing price will be calculated (see

section 4.3 for more information) and all market orders

will be filled at that price. If there is not enough liquid-

ity to fill all market orders, then the orders that accept

greater slippage will be prioritized.

order will get filled by purchasing Q shares at price P

Then, matching limit orders will get processed. If

any limit orders can be filled, they will be filled at the

best price. For example, assume the order book store

has sell orders for P1 with quantity Q and P2 with quan-

tity Q, where P1 < P2. A buy limit order exists for P3

> P2 for quantity 1.5 * Q. In this case, the buy limit

1

and 0.5 * Q share at price P2.

Finally, any unfilled market orders will expire. At

the conclusion of the matching engine logic, it will call

the relevant smart contract to handle asset settlement

(Figure 5 action 6).

4.1.2 Hook Support

TERDallows contracts to register ”hooks”

with the net-work.

The registered hooks will be invoked every block 

and allow operations like flashloan payback to happen 

in the same block as any associated trade settlements.

Specifically, a contract can define two hooks. The first 

one is called at the beginning of a block to give contracts 

an opportunity to prepare for any potential trade that 

may happen in the same block. The second is called at 

the very end of a block, after order matching and set-

tlement, allowing contracts to perform any post-trade 

logic if needed.

The matching engine does not require tokens to be

traded, and instead offers a flexible interface that lets

decentralized exchanges decide how to represent assets.

4.2 Asset Agnostic Matching Engine

For example, instead of tokenizing positions, decentral-



TERD: The Sector Specific Layer 1 8

ized exchanges can track positions as a list in their

smart contract state.

4.3 Frequent Batch Auctioning

Executing orders in a sequential manner encourages 

validators to arrange transactions in ways that can be 

profitable for themselves. For example, when they see 

an incoming market order, they can include their own 

market order to buy that asset, and their own limit or-

der to sell that asset at a higher price before the incom-

ing transaction is processed. To discourage this form of 

MEV (maximal extractable value) TERD‘‘s matchin

g en-gine aggregates all market orders and executes th

em at the same uniform clearing price.

For example, if the order book has two asks (sell

orders) orders for prices P1 and P2 and there are two

incoming bids (buy orders) B1 and B2, then both B1

and B2 will get executed at the uniform clearing price

P 1 + P 2

2

rather than having B1 getting executed at P1 and B2

getting executed at P2. This results in the existing limit

orders getting filled at their intended price (P1 and P2)

while the incoming market orders get a fairer price.

4.4 Transaction Order Bundling

TERDoffers multiple layers of order bundling to i

m-prove user experience and performance, outlined in

the sections below.

4.4.1 Client Order Bundling

TERDtransactions can be composed of orders goin

g to multiple trading markets

(even those spanning smart contracts, i.e.

orders to both a BTC/USDC spot pair 

and a BTC perpetual exchange). During block process-

ing,

TERDwill correctly route all orders to their respective 

smart contracts. This will help market makers cut down 

on gas costs associated with updating their positions.

4.4.2 Chain Level Order Bundling

Each matching engine related transaction will re-

quire instantiating the virtual machine (VM). Rather 

than having multiple VM instantiations,

TERDbundles all orders across all transactions

(per market) and only performs one VM instantiation

. This reduces latency by roughly 1ms per order,

which is substantial in peri-ods of high throughput.

4.5 Trading Fees

The matching engine will not charge any trading 

fees at the chain level at launch. Governance can choose 

to start applying trading fees in the future. Decentral-

ized exchanges that are building on top of TERDcan

add 

in their own trading fees depending on the experience 

they want to offer their users. This would be defined at 

the smart contract level, and will be easily configurable 

for developers.


